A Numerical Simulation of Scattering from One-Dimensional Inhomogeneous Dielectric Random Surfaces - Geoscience and Remote Sensing, IEEE Transactions on

نویسندگان

  • Kamal Sarabandi
  • Yisok Oh
چکیده

In this paper, an efficient numerical solution for the scattering problem of inhomogeneous dielectric rough surfaces is presented. The inhomogeneous dielectric random surface represents a bare soil surface and is considered to be comprised of a large number of randomly positioned dielectric humps of different sizes, shapes, and dielectric constants above an impedance surface. Clods with nonuniform moisture content and rocks are modeled by inhomogeneous dielectric humps and the underlying smooth wet soil surface is modeled by an impedance surface. In this technique, an efficient numerical solution for the constituent dielectric humps over an impedance surface is obtained using Green's function derived by the exact image theory in conjunction with the method of moments. The scattered field from a sample of the rough surface is obtained by summing the scattered fields from all the individual humps of the surface coherently ignoring the effect of multiple scattering between the humps. The statistical behavior of the scattering coefficient no is obtained from the calculation of scattered fields of many different realizations of the surface. Numerical results are presented for several different roughnesses and dielectric constants of the random surfaces. The numerical technique is verified by comparing the numerical solution with the solution based on the small perturbation method and the physical optics model for homogeneous rough surfaces. This technique can be used to study the behavior of scattering coefficient and phase difference statistics of rough soil surfaces for which no analytical solution exists.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical simulation of scattering from one-dimensional inhomogeneous dielectric random surfaces

-In this paper, an efficient numerical solution for the scattering problem of inhomogeueuns dielectric rough surfaces is presented. The inhomogeneous dielectric random surface represents a bare soil surface and is considered to be comprised of a large number of randomly positioned dielectric humps of different sizes, shapes, and dielectric constants above an impedance surface. Clods'with nonuni...

متن کامل

Finite-difference time-domain simulation of scattering from objects in continuous random media

A three-dimensional (3-D) finite-difference time-domain (FDTD) scheme is introduced to model the scattering from objects in continuous random media. FDTD techniques have been previously applied to scattering from random rough surfaces and randomly placed objects in a homogeneous background, but little has been done to simulate continuous random media with embedded objects where volumetric scatt...

متن کامل

Monte Carlo simulations for clutter statistics in minefields: AP-mine-like-target buried near a dielectric object beneath 2-D random rough ground surfaces

A rigorous three-dimensional (3-D) electromagnetic model is developed to analyze the scattering from anti-personnel (AP) nonmetallic mine-like target when it is buried near a clutter object under two-dimensional (2-D) random rough surfaces. The steepest descent fast multipole method (SDFMM) is implemented to solve for the unknown electric and magnetic surface currents on the ground surface, on ...

متن کامل

The small slope approximation reflection coefficient for scattering from a "Pierson-Moskowitz" sea surface

Firstand second-order reflection coefficients are presented for the small slope approximation. The first-order reflection coefficient is identical to the Kirchhoff, or physical optics, result, and the secondorder reflection coefficient reduces to those of perturbation theory and the Kirchhoff approximation in the appropriate limits. Numerical results are obtained for acoustic or TE-polarized el...

متن کامل

Effective permittivity of mixtures: numerical validation by the FDTD method

The present paper reports the results of an extensive numerical analysis of electromagnetic fields in random dielectric materials. The effective permittivity of a two-dimensional (2-D) dielectric mixture is calculated by FDTD simulations of such a sample in a TEM waveguide. Various theoretical bounds are tested in light of the numerical simulations. The results show how the effective permittivi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004